representations$531182$ - definizione. Che cos'è representations$531182$
Diclib.com
Dizionario ChatGPT
Inserisci una parola o una frase in qualsiasi lingua 👆
Lingua:

Traduzione e analisi delle parole tramite l'intelligenza artificiale ChatGPT

In questa pagina puoi ottenere un'analisi dettagliata di una parola o frase, prodotta utilizzando la migliore tecnologia di intelligenza artificiale fino ad oggi:

  • come viene usata la parola
  • frequenza di utilizzo
  • è usato più spesso nel discorso orale o scritto
  • opzioni di traduzione delle parole
  • esempi di utilizzo (varie frasi con traduzione)
  • etimologia

Cosa (chi) è representations$531182$ - definizione

MODULE OVER A CLIFFORD ALGEBRA
Matrix Representations of Real Clifford algebras; Representations of Clifford algebras

representations         
HUMANITIES JOURNAL, PUBLISHED BY THE UNIVERSITY OF CALIFORNIA PRESS
Representations (journal)
statements made to an authority to communicate an opinion or register a protest.
Representations         
HUMANITIES JOURNAL, PUBLISHED BY THE UNIVERSITY OF CALIFORNIA PRESS
Representations (journal)
Representations is an interdisciplinary journal in the humanities published quarterly by the University of California Press. The journal was established in 1983 and is the founding publication of the New Historicism movement of the 1980s.
Springer correspondence         
Springer representations; Springer's representations; Springer's representation; Springer representation
In mathematics, the Springer representations are certain representations of the Weyl group W associated to unipotent conjugacy classes of a semisimple algebraic group G. There is another parameter involved, a representation of a certain finite group A(u) canonically determined by the unipotent conjugacy class.

Wikipedia

Clifford module

In mathematics, a Clifford module is a representation of a Clifford algebra. In general a Clifford algebra C is a central simple algebra over some field extension L of the field K over which the quadratic form Q defining C is defined.

The abstract theory of Clifford modules was founded by a paper of M. F. Atiyah, R. Bott and Arnold S. Shapiro. A fundamental result on Clifford modules is that the Morita equivalence class of a Clifford algebra (the equivalence class of the category of Clifford modules over it) depends only on the signature pq (mod 8). This is an algebraic form of Bott periodicity.